Modern Software Development

DORA All the Way or What?

Thomas Much, Techniker Krankenkasse
WeAreDevelopers World Congress
Berlin, 11 July 2025

WY D) @thmuch

Help /’ Undy
‘ /
4
/ / Home '

lns f 4 7

(i

PaAIt 1 FLASHM BRIGHT OVE R INVEE

Modern Software Development

High guality, built-in
Fast feedback on customer value

Continuous software development

TL'DR

DORA capabilities super important!
resp. underlying software development practices & skills

Most probably even in the age of (Gen)Al

Get to know them. Learn them. Use 'em.

Digital Operational Resilience Act

DevOps Research and Assessment

Once Upon a Time ...

Phoenix
PI‘O] ect &3

RESOURCE
A Novel About IT, DevOps, GUIDE

and Helping Your Business Win

Gene Kim, Kevin Behr, and George Spafford

Project

A Novel about Developers,
Digital Disruption, and
Thriving in the Age of Data

Gene Kim
Author of The Phoenix Project

THE SCIENCE OF LEAN SOFTWARE AND DEVOPS

ACCELERATE

Building and Scaling High Performing
Technology Organizations

el Nicole Forsgren, PhD
Jez Humble, ond Gene Kim

with forewords by Martin Fowler and Courtney Kissler
and a case study contributed by Steve Bell and Karen Whitley Bell

State of
DevOps

Report
(since 2013)

DORA
(2015)

2018

THE SCIENCE OF LEAN SOFTWARE AND DEVOPS

ACCELERATE

Building and Scalin g High Performing
Technology Orgamzatlons

Nicole Forsgren, PhD

Jez Humble, and Gene Kim

with forewords by Martin n Fowler and Courtney Kissler
and a case study contributed by Steve Bell and Karen Whitley Bell

Latest report
2024

TN

I|

g._"' o
..

https://dora.dev/

High Performing Teams
High Performing Organizations

Smarter. Not Harder.

What do

High Performing Teams
High Performing Organizations

have in common?

Survey

GEACED

DORA Four Key Metrics

Deployment
frequency

deployment
recovery time

DORA Core Model

- — e ——

“* > Performance

l \ L
N /
N
N——— _ -

rganizational

delivery [| | performance

| |

1 (N

—_———— ————————— —— ——— —_— — - p— penl
= S — — — ——— el —

e ——— P —

https://dora.dev/research/

DORA Core Model Predictions

|
4
/
/
/ f

https://dora.dev/research/

DORA Capabilities

Continuous Delivery
Test automation

Climate for | | Monitoring and observability

e — e —

Documentation quality

Empowering teams to choose tools

Well-being

29 capabilities (2024)

https://dora.dev/capabilities/

Let's have a look at

selected

capabilities

Reproducibility

Traceability

(auditors love this!)

dora.dev/capabilities/version-control/

Y J H i R [k i (]
TR T E—— [5 7 R nttosi/pixabay.com/de/photosh

B

-6%C3%BCoher-mauer

: hd ‘l ’l ir I._ 'i' ‘ i l.-; ‘_;_ ar_l':!-l-\. .-.
(5] 0 L
Wl .

Source code @

' 5 Build & test scripts

i 2

Infrastructure configuration

Database schema

Everything ¢ Y

(audltors Iove thls even more')

CEBEAREELE T W (i
i

dora. dev/capabllltles/ver5|on control/

% //plxabay con'gde Hhoto :

"... full version control is that

| should be able to walk up with a very
minimally configured environment [...] and
be able to easily build, and run the product
after cloning the repository."

— Martin Fowler

martinfowler. com/artlcles/contmuouslntegratlon html

Continuous Integration (Cl)

e

Every commit triggers a build

Every commit triggers automated tests
that provide feedback within minutes

Keeping the build green is highest priority

Integrate all work into the main line at least daily &

dora.dev/capabilities/continuous-integration/

https://pixabay.com/de/photos/f%C3%A4den-stillleben-n% C3%A4hen-garn-dekor-5296409/

Don't branch !

Short(est)-lived branches ¥/

i"'.:

%ﬁ T '% haf:.igfg .'#
A = Ek .l-.:'; A

mﬂfﬁﬁf *}}ﬂ
ANV
LA N

Sranalan® VT i

Ly :Fﬂ'ﬁ.;":ﬁf. J
d--"?:i‘*.'.ﬁ'%f?ﬁ' £

; . ,_'.:_ _r___.l: i o ! ;;IL:- ‘r_.1 ‘. ' .'- o .:.Z:- 7 ; = - 7 ; - ; ; W 5 E S L P)
r L o O ; ﬁ# ot - .. i 4 e o e ; i pﬁwf-ff ; i%‘.?‘ 2 -}’r:g 3 -ﬂ' £, % 1;- B i i S ;
W N i S RSO R A g e B e o .f S ?ﬁ% IRV Sy % e i S A S 2BEaEG

L4 3 N h - A .) 2
& 1 7 e B, YT e R $ S = £ 8 E 1 ek S -
5 A, S e~ - [il p e * o .. e - e ATE iy, T » A TR P '-.-'+ N -'.1:-!1-:1"' :ﬂhil N P T

Three or fewer active branches.
Merge branches to trunk at least once a day.
No code freezes. No integration phases.

Comprehensive automated'testing.

N oo :
A
=I5
o A RS
P, e B i A
S N s
G vk 4

WY Ay
LT

ﬁ-‘iﬁ#
=< o)

aegll . Synchronots code reviews.

-, P Nipt San 1
e e i
o S Tt LT i

4 ".v.'-wi"ﬁ?ﬁ_i-ﬁ' #

Fhd oeml s r =
,..-'.i".."-.-\-} *
s
e E

Lo e a A

R _J-'_'J'"I' . L F o
s o et JJ] L

FaFa s ﬁm-ﬁ o o
%}- .‘J E -:l:::ul_z: o ! ’

y
E

Work in small batches.
dora.dev/c pabilitie /tnk—‘baﬁe_glu-ql yelopment/

e, -2 -' : o A ‘*ﬁ@ Y it N 7 e ey el i ol e sy 1 T 5" £ = bl Y i, - - Bl A e R o AEN N SRR TR
W el AN B R e N ORI SRR T s S T SRR Ry liRions aRasy

: | y C] 4 / .
L L) i - s - g, T T, .7 Eaen L o ey] =
e e s T N o . = - e — ! A TR et o SR el R S T P i P, ¢

Continuous Delivery (CD)

Ability to deploy to production at any time, on demand.
Not necessarily automatically. But all steps automated.

Increases flexibility. Minimizes risk.

Builds on many other capabilities!

dora.dev/capabilities/continuous-delivery/

https://pixabay.com/de/photos/paket-postdienst-lieferung-postamt=¢2259 76/

Microservices? Monolith?

Deployment strategy does not matter that much.

Loose coupling makes the difference.

dora. dev/capabllltles/loosely coupled teams/

Loose Coupling..

|y R
Team can change design of their systems without permission
or dependency on other teams.

Team can complete work without fine-grained communication
or coordination with people outside the team.

Team can deploy and release independently of surrounding systems.
Team can do most of their testing w/o an integrated test environment.

Team deF)lOyS durlng nOrmaI bUSIHeSS hOUrS. dora.dev/capabilities/loosely-coupled-teams/

- . RHPSY/pixabay:com/defphotos/verbindung-eisenbahn-koppel-5022763/

Is This Really New?

Not at all.
Remember Extreme Programming (XP)?

Good practices. Worst naming ever.

History

The :
1999 Pragmatic

rograminer

from journeyman
to master

Andrew Hunt
David Thomas

Foreword by Ward Cunningham

Extreme .
rogramming

Explained

EMBRACE CHANGE

D!

Reracroring
IMPROVING THE DESIGN
OF EXISTING CODE

MARTIN FOWLER

With contributions by Kent Beck, John Brant,
William Opdyke, ana Don Roberts

Foreword by Erich Gamma
Object Technology International, Inc.

2 OO 1 Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Kent Beck James Grenning Robert C. Martin
Mike Beedle Jim Highsmith Steve Mellor
Arie van Bennekum Andrew Hunt Ken Schwaber
Alistair Cockburn Ron Jeffries Jeff Sutherland
Ward Cunningham Jon Kern Dave Thomas
Martin Fowler Brian Marick

Twelve Principles of Agile Software

Agile Software
Development

Alistair Cockburn

2002

Pair Programminé
llluminated

b

Laurie Williams and Robert Kessler

/,/Jlf o /’////.-'r' 72 f}f)/?/ ’ /{;;//,,,f/;,;, % ./;.-5/}_;-

TEST-DRIVEN
DEVELOPMENT

1) = g~ T .
By EXAMPLE

History Repeating Evolving

2013 2022
PAONRS

SOFTWARE TEAMING
Mob Samman

Coaching
. : . :
Programm|ng Technical Agile Coaching

sl o with the A Mob Programming, Whole-Team Approach
Pa"' Programmlng A Whole Team Approach Second Editior
]
llluminated

1999

Tlle Manifesto for Agile Software Development

Prz}gmatlc

We are uncovs tter ways of developing
I‘O I‘ aI [I mer software by d¢ ing others do it.
Through this work w come to value:

Individuals and interactions over processes and tools:
‘Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

e there is value in the items on
the right, we value the items on the left more.

Kent Beck James Grenning ~ Robert C. Martin
from journeyman Mike Beedle Jim Highsmith Steve Mellor = X
L to master Atie van Bennekum ~ Andrew Hunt Ken Schwaber By Woody Zuill and Kevin Meadows
Ron Jeffries Jeff Sutherland) .
ingha Jon Kern Dave Thomas Woody Zuill and Kevin Meadows
A d B Martin Fowler Brian Marick
rew unt Foreword by Kent Beck
David Thomas
Foreword by Ward Cunningham Twelve Principles of Agile Software Laurie Williams and Robert Kessler

2022

2016 (& 2021
1999 (& 2004) 2001 2007 (& 2018) 2010 016 (& 2021) ~ 2018

THE SCIENCE OF LEAN SOFTWARE AND DEVOPS

” Se SAiison ooty Tz Shries * ACCELERATE DAVID FARLEY
Agile Software < g snd Sain High Peforming
Development Release It! <M\ % echnology Organizations

MODERN

ER SOFTWARE

FOR BUSINESS AGILITY ~""""™"™"

Design and Deploy C ONTINUOU S

E t m e Production-Ready Software D ELIVERY

ogramming
Explained

EMBRACE CHANGE

HOW TO CREATE WORLD-CLASS
AGILITY, RELIABILITY, & SECURITY
IN TECHNOLOGY ORGANIZATIONS /{/_[.1

ORGANIZING
BUSINESS AND
TECHNOLOGY

TEAMS FOR FAST
FLOW

Jez HUMBLE
DaviD FARLEY

Featuring new foreword
and updated material by

Michael T. Nygard

1l Doing'What Works to
|| Build Better Software Faster

Alistair Cockburn

1999 (& 2019 2002

Foreword by Martin Fowler

] . ;
S S ! Nicole Forsgren, PhD & =

] _
Jez Humble, and Gene Kim MATTHEW SKELTON
oty et ted by o Bl Kare Wiy Bl and MANUEL PAIS ;

Foreward by TRISHA GEE

2023
| Tldy First?

A Personal Exercise in Empirical Softy

2011

E——

T litdion Wooiy Fiymatone Focos
Reractoring

IMPROVING THE DESIGN = TEST-DRIVEN
oF ExisTING CoDE DEVEL OPMENT

By EXAMPLE

G0JKo Avric

MARTIN FOWLER

‘With contributions by Kent Beck, John Brant,

4
‘William Opdyke, ana Don Roberts

(N

Foroword by Erich Gamma
Object Technology International, Inc. KentT BECk

SPECIFICATION
BY EXAMPLE

; ’ Kent Beck
How successful teams deliver the right software Foreword by Larry Censtantine

| P
M wanninG

Modern Software Development 2025

Applying all the good practices

we’ve been knowing for 15, 20, 30, 50 years.

Only this time we've got P R O 0 F

and decision-maker frlendly documentatlon & guides.

*) empirical underpinning

What about (Gen)AI? ™

Niko Heikkila 3¢
@nikoheikkila@fosstodon.org

5- "Let's apply the empirical knowledge from past

Software engineering until 202
d testable solutions to satisfy our users.

decades to design maintainable an

in 2025: "Hey, | found this magical oil lamp from the

Software engineering

desert. Can you tell me how to ru ?"

b it correctly so the genie will obey me

https://mastodon.social/@nikoheikkila@fosstodon.org/114765667066055508

DORA 2025 Findings on Al

Developer Happiness 7

Software Delivery Performance

More Bugs, Quality

Can we still review the code being generated?

How fast can we understand?

Typing code fast was never the bottleneck.
Thinking is.
Skills & capabilities are.

/

Required Future Skill? @

Writing
testable
executable

specifications

Recap

DORA capabilities super important!
resp. underlying software development practices & skills

Most probably even in the age of (Gen)Al

Get to know them. Learn them. Use 'em.

THE SCIENCE OF LEAN SOFTWARE AND DEVOPS

ACCELERATE

Building and Scaling High Performing
Technology Organizations

Nicole Forsgren, PhD
Jez Humble, and Gene Kim

with forewords by Martin Fowler and Courtney Kissler
and a case study contributed by Steve Bell and Karen Whitley Bell

DAVID FARLEY

M ODERN
SOFTWARE
ENGINRERING

P s By | /e s - . = - -~ L

;7:.':* —\ :) ;)i Vu Vo g

— Z = 7z - L e

ZZ 7 . N =
.i 1 . :) SRR O ‘;' e

/ i 28| O Re— o

N] _. S

7] 69 HEH \ Doing'What Works to
|| Build Better Software Faster

{’P ; " Foreword by TRISHA GEE

? REBECCA WIRFS-BROCK

,/Z; Mwﬁ %é/ : ?Wéﬂ?& %MA
. 7 é)G 4N

BALANCING
COUPLING IN
SOFTWARE DESIGN

UNIVERSAL DESIGN PRINCIPLES
FOR' ARCHITECTING MODULAR
SOFTWARE SYSTEMS

Viap KHONONOV

Forewords by

ad KENT BECK

Evelyn van Kelle
Gien Verschatse
Kenny Baas-Schwegler

Forewords by Diana Montalion
Trond Hjorteland

/ll MANNING

... the real trade-off, over long periods of time, is between

"better software faster” and "worse software slower"' — Dave Farley

www.infog.com/articles/replace-process-dogma-engineering/

www.puppet.com/resources/history-of-devops-reports minimumcd.org

dora.dev

voutube.com/@ModernSoftwareEngineeringYT

trunkbaseddevelopment.com

www.continuous-delivery.co.uk

martinfowler.com/articles/continuousintegration.html

scs-architecture.org collaborative-software-design.com

coupling.dev ,
www.soonersaferhappier.com

tsvallender.co.uk/blog posts/a-vision-of-continuous-integration

1L 4

Techniker

www.tk.de/IT

| Techmcal |
Agﬂe Coach,

HOMAS

@thmq_gh

Thank
You!

Genera

ted with GPT-40

