
How Testability Supports Your Agility

Thomas Much
 @thmuch

6 September 2022, Berlin

– and why this matters for your architecture!

TL'DR
• Agility in software development:

Continuously deliver value to our customers.
Easily & quickly adapt to change.

• Requires safety, for example by fast, continuous test automation.

• Difficult if code and architecture aren't designed for testability.

• Separation of integration code and domain code
is one of the fundamental ideas for testability.

• Fosters collaboration & thinking
about testing & testability in different roles.

Ideas presented today are not new.

Necessary to talk about basics from time to time.

These basics are still essential.

Maybe more essential than 20 years ago,
because more & more companies want to be agile

and deliver software (value) continuously.

Please Note

Technical
Agile

Coach

@thmuch

www.tk.de/IT

Agility

Testing

Architecture

Agile

Testing

Architecture

Short survey:

Who mostly

has to do with …

Coding

Agile

Coding & Testing

Architecture

Typical situations:

Our team isn’t working "Agile" enough.

Customers not satisfied, results come in too slowly.

"We don't see any progress"

Typical Symptoms
No tests  

(just maybe some random clicking here and there)

Mostly manual tests  
(slow!)

Slow automated tests  
(usually e2e / ui)

Fragile, unstable, flakey tests
(dependent on environment / external systems)

Teams with fast test automation 
are more agile*

than those without

*) deliver more often, release in smaller batches, have a common
understanding of their software, can support each other better – and

they can write tests more easily

Not necessarily all "Agile" teams I've met …

My Findings

Symptom?
Cause?

🤔

What Makes Them More Agile?

🧔
👩

👱
👱

🧑

Dev
Team

Fast local tests
Fast feedback!

Lots of
automated

tests

No manual
interaction

Deployments
decoupled from

releases

Every
commit?

Multiple
times a

day!

Build

Mostly
automated

tests

Automated
gateway

Deploy to
"pre"

stage(s)

Deploy
to "prod"

Mostly
automated
gateway

How Dare They?
Safety net of a fast, predictable, comprehensive test suite

They deliver value continuously
(and if something Bad™ happens, it was only

a small change, easy to analyze, easy to revert)

Happy devs
(and probably happy customers)

They dare to make changes,
dare to try what helps the customers

Icons from modernagile.org

That's Pretty Agile! 😃
Modern Agile, actually.

Modern Software Engineering.

Micro architecture

Macro architecture

Result of Evolution
(Most) often started small, then scaled.

With lots of freedom and some guidelines.

🏛

🏡🏠
🏚

🏘🛖

🏙

🎪

What is Architecture, Anyway?

"Everything that is hard to change"

All decisions that need lots of rework/redesign/refactoring later on.

How to decide?

Some general principles to keep in mind, pretty old ones.

Testability is a

property of your

architecture

Aspects of Structure And Design

High modularity

Strong Cohesion

Loose coupling

Information Hiding

Factors Affecting Test Speed

High modularity

Strong Cohesion

Loose coupling

Information Hiding

Separation

of systems

Size of
systems

Dependen-

cies between

systems

Dependen-

cies within

one system

🔍
Focus
here
today

Separation of
Integration Code

and
Domain Code

• Local decision.

• Often possible in legacy systems, too.

• Essential for a solid foundation of fast tests.

• Helpful for testing on all levels.

I Need an Example
🧐

🤔

🥱

😵💫😳
🤯

Validation
+

Transformation
DatabaseInput

data

A Common Real-World Example

Validation
+

Transformation
DatabaseInput

data

Lots of Dependencies
Dependencies are often beyond our control

DB schemaPersistence
framework & entity

representation

Input / transport
(file) format

Some framework
(Spring, Java EE

etc.)

Business
requirements

Dependencies … Reasons for Changes
… changes that break the code

… changes that break the tests

Validation
+

Transformation
DatabaseInput

data

DB schemaPersistence
framework & entity

representation

Input / transport
(file) format

Some framework
(Spring, Java EE

etc.)

Business
requirements

What & Where to Test?

Validation
+

Transformation
DatabaseInput

data

End to end ("everything")

Integration
Hard & slow

to test

Unit / component

Few Dependencies, Maximum Scope

Validation
+

Transformation
DatabaseInput

data

Let the fast tests
test as much of your use case

as possible!

Let tests break
for as few reasons

as possible

Validation
+

Transformation
DatabaseInput

data

Ideal World – Clear Responsibilities
Domain code

("business logic")
External
system

External
system

Integration
code

Integration
code

Validation
+

Transformation
DatabaseInput

data

Dependencies Creep Into Our Domain
Domain code

("business logic")
External
system

External
system

Integration
code

Integration
code

Let's have a look

at some code!

Unwanted

Validation
+

Transformation

Dependencies in Domain Code

 function validateAndTransform(jsonEntity) {

 validateSomeBusinessRules(jsonEntity);
 transformSomeValues(jsonEntity);

 mapToDatabaseEntity(jsonEntity) -> dbEntity;
 saveToDatabase(dbEntity);
 }

Oh no!

Unwanted

Dependencies in Domain Code

 function validateAndTransform(jsonEntity) {

 validateSomeBusinessRules(jsonEntity);
 transformSomeValues(jsonEntity);

 mapToDatabaseEntity(jsonEntity) -> dbEntity;
 saveToDatabase(dbEntity);
 }

Nobody

would code like this,

right? 🤣😬

Become aware

of this strong

coupling

Maybe time

for some

refactoring?

Unwanted

Dependencies in Domain Code
 function validateAndTransform(jsonEntity) {

 call domainCode(jsonEntity);

 mapToDatabaseEntity(jsonEntity) -> dbEntity;
 saveToDatabase(dbEntity);
 } function domainCode(jsonEntity) {

 validateSomeBusinessRules(jsonEntity);
 transformSomeValues(jsonEntity);
 }

Dependencies in Domain Code
 function validateAndTransform(jsonEntity) {
 mapToDomainEntity(jsonEntity) -> domainEntity;
 call domainCode(domainEntity);

 mapToDatabaseEntity(domainEntity) -> dbEntity;
 saveToDatabase(dbEntity);
 } function domainCode(domainEntity) {

 validateSomeBusinessRules(domainEntity);
 transformSomeValues(domainEntity);
 }

Only some integration tests
here

("happy path" & error case?)

Lots of fast (unit) tests
here

(including edge cases)

Patterns & Styles

Code design patterns

"Integration Operation Segregation Principle" (IOSP)

"Single Layer of Abstraction" (SLA)

etc.

There are similar architectural patterns & styles as well!

Architectural Patterns

Domain
code DatabaseInput

data

Architectural Patterns

Domain
code DatabaseInput

data Get input
from

somewhere

Save output
to

somewhere

Fast (unit) test for complete use-case

Test
double

Test
double

Architectural Patterns

Domain
code DatabaseInput

data Get input
from

somewhere

Save output
to

somewhere

JSON
client

adapter

Postgres
database
adapter

Architectural Styles

Domain
code

PortPo
rt

Ad
ap

te
r

DatabaseInput
data

Adapter

Architectural Styles

Domain
code

PortPo
rt

Ad
ap

te
r Adapter

Application

PortPo
rt

Ad
ap

te
r Adapter

Domain

Ports & Adapters ("Hexagonal") Onion Use cases

Model
+

Services

Outside & Inside for Longevity

Application

PortPo
rt

Ad
ap

te
r Adapter

Domain
Allowed dependencies

"More likely
to change"

"Less likely
to change"

Less under
our control

More under
our control

Business
requirements! ⁉ ⁉

No more layers

(above vs. below)

More

inside vs. outside

Changes more
"disruptive"

Fast Tests for Complete Use Cases

Application

PortPo
rt

Ad
ap

te
r Adapter

Domain

Te
st

 d
ou

bl
e Test double

Fast (unit) tests
– not only micro tests 😃

Patterns & Styles for Testability

Focus not so much on structuring code

Focus more on ways of thinking – on "why"

Learn how to build software with testability in mind

Easier to grasp

"Why not just do TDD all the way?"
Just enough tests.

Code design technique / strategy ✅

Makes your code testable (and probably your architecture, too) ✅

🧔👱
Agile Developers
(XP Practitioners)

TDD is Not the Goal

TDD can be hard to grasp. May seem like ideology.

"Schools" can be confusing.

"Inside-out", "outside-in", "London", "Belfast" and "Berlin" …

Needs experience.

Especially for creating your architecture with TDD.

If TDD is the only

cure, you'll often

encounter
reluctance

TDD is a Really Useful Tool
Motivate "why" of structuring patterns & styles for testability.

Then use TDD as a means for "how".

Learn/show/experiment
how to use TDD not only for micro tests ("unit tests")

but for fast tests of complete use cases.

What BDD aims at. As TDD was intended?

Bonus

Bonus

How to Keep Testability?
Test your architecture!

Build Fitness Functions for the core ideas behind your architecture

"dependencies from outside to inside only"
"no framework dependencies in domain code"

etc.

Use suitable tools, for example ArchUnit

First step towards an evolutionary architecture?!

Wrap-Up

Testability at the Speed of Light

Testability is a property of your architecture. 

Enables a safety net that promotes agility. 

Learn how to build software with testability in mind!

Explore freedom
of (design) choices

Agility

Testability

Archi-
tecture

Start where you are

Agility

Testability

Archi-
tecture

Collaborate.
Work together.
Code together.

Learn from each other.

Agility

Testability

Archi-
tecture

Further Reading

Let's talk!
(Q & A)

Fast Tests

Continuous Delivery
Dependencies

Decoupling

Code Design

Agility

Testability

Fast Feedback Loops

Architecture

Cohesion

@thmuch

@thmuchwww.tk.de/IT

Thank You 😊

"Do not depend on volatile things"
(Robert C. Martin)

"Make the change easy (this can be hard!), 
then make the easy change"  

(Kent Beck)

"Many More Much Smaller Steps"
(GeePaw Hill)

